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TABLE II. 14 -> 7+7 decays. 

I+-*pK°(a) 
N*++->pw+(3b) 

tf*+->K(2» 
N£-*m»{2b) 
N*--*mr(Zb) 
YS-+pK*(2g) 
YHo->pK-(g) 
Y*f-+pKr(k) 
Y*--+nK-(2g) 
E*+-+H°7r+(3e) 
E*0->EV(2«) 
H*-->E-7r°(2e) 

E* —>S~7r~(3e) 

n-->z-K°(f) 

nK+(a) 
2+K+(3c) 
mr+(b) 
pir~(b) 

S+7T°W 
«K°(g) 
^2<L0(£) 
S-7T°(^) 
2+Z°(3<Z) 
S-TT+W 
S°7r-(e) 
2-K-(3d) 

&K-<J) 

W(c) 
2~K+(c) 
2~KQ(3c) 
2QT+(h) 
2+ir-(h) 
S + T T - ( / ) 

20Tr-(h) 

2+K~(d) 
X-K°(d) 

2QK+(2c) 
X°K°(2c) 

&K+(2j) 
X-ir+(h) 
S07T°(/) 

E-2P(2i) 

S°X°(2^) 
S°K-(2(/) 

E°£°(./) 
S-7T+(/) 

K-*+y) 
Z0K<>(m) S-K+(m) 

get six modified Shmushkevich equations: 

2(a+f) = 3(b+c+d+e) = 4(g+h+j) 
= 4(k+m)+6l, 

2(a+g+h+j) = 6(b+c), 
a+6b+3g+k+3j+m+6e+f=8c+Sd+ih+2l, (9) 
a+6c+3j+m+3g+k+6d+f=Sb+&e+4k+2l. 

From these equations we can deduce 

3(b+e) = 2(g+h+j). 

So that we have the inequality 

b+e>ig, 

which may be experimentally tested. 

(10) 
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The study of the Bethe-Salpeter equation for lepton-lepton interaction mediated by charged vector 
mesons is continued. Starting from the exact integral equation, an improved approximation procedure is 
developed. This reproduces the low-energy results for "allowed" processes given in a previous paper. Beyond 
that, it is now found that to leading order the BS equation gives the value 3g2/47r2 for the zero-energy ratio 
between "forbidden" and "allowed" amplitudes, where g is the bare meson-lepton coupling constant. Some 
information on the momentum dependence of the forbidden amplitude is also obtained. The mathematical 
methods developed in an earlier paper are then applied to the corresponding Bethe-Salpeter equation of the 
Fermi field theory. It is shown that the calculated amplitudes for both allowed and forbidden processes are 
equal to zero. This illustrates the fact that if higher order effects are taken seriously, there is no reason to 
consider the Fermi field theory as the limiting case of a vector meson theory with a boson mass which tends 
to infinity. 

1. INTRODUCTION 

IN the first paper in this series,1 we have shown that 
in the vector meson theory of weak interactions 

(W theory), graphs involving more than one virtual 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

t Alfred P. Sloan Foundation Fellow. 
1 G. Feinberg and A. Pais, Phys. Rev. 132, 2724 (1963), referred 

vector meson may give sizable contributions to the 
matrix element for processes like ju decay. This is true 
in spite of the smallness of the meson-lepton coupling 
constant g, and occurs because of the divergences which 
make the perturbation expansion meaningless. In I we 

to in this paper as I. We denote Eq. (4.19) of that paper by 
Eq. (14.19) in this work. For the terminology "leptonic" and 
"semileptonic" see I, Ref. 2. 
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also gave a preliminary discussion of semileptonic 
reactions. In the present paper we confine ourselves to 
leptonic phenomena only. 

In I, we considered the set of uncrossed ladder graphs2 

for lepton-lepton scattering, and derived the Bethe-
Salpeter (BS) equation for the scattering amplitude 
described by these graphs. This equation was then 
solved by an iteration scheme in which the first approxi
mation includes the apparently most singular term in 
the kernel of the BS equation. We called this first 
approximation to the exact BS equation the "approxi
mate integral equation," see Eq. (14.22). The remaining 
terms in the equation were then treated by successive 
approximations and were found to be small. In this 
way, we succeeded in showing that for some physical 
processes (the "allowed" ones) the contribution of the 
higher order graphs is finite and comparable to the one 
meson exchange, whereas for other processes (the 
"forbidden" ones), the contribution of higher order 
graphs is finite but small compared with g2. 

In this second paper, we wish to present a somewhat 
different treatment of the integral equation for the 
uncrossed ladder graphs in the W theory.3 There are 
several reasons which impel us to do this. 

(1) According to the method developed in I, the 
leading correction due to higher order effects is obtained 
by summing the "most divergent" terms in the per
turbation expansion of the graphs considered. It is not 
evident that this prescription is equivalent to solving 
the approximate integral equation. One way of judging 
this would be to know whether or not the rather 
complicated iteration procedure outlined in I actually 
converges, but this we were unable to ascertain. In this 
paper we show that the answer obtained in I is never
theless correct to 0(g2). 

This conclusion has meanwhile been reached inde
pendently by Pwu and Wu.4 The present work goes 
beyond the results of these authors in that we also 
obtain, at zero energy, the magnitude of the correction 
term. This term is of some importance, as it determines 
to leading order the magnitude of the "forbidden" 
processes. In the Pwu-Wu approximation the only 
result obtained for the forbidden amplitude is: zero 
to 0(g2). 

(2) In I we found,5 up to the accuracy of the first 
iteration, that the forbidden amplitude is at most of 
order g4 Ing. To get the coefficient of the leading term 
in the forbidden process, it would at least be necessary 
to calculate the first iteration precisely. This is rather 
cumbersome and was not carried out in detail there. In 
this paper, we present a considerably simpler method 

2 These are defined as the graphs in which the arrows on the 
fermion lines are parallel and the meson lines are uncrossed, 
see I, Sec. (VH.b). 

3 We use again the Lagrangian Eq. (12.1). 
4 Y. Pwu and T. T. Wu, University of Pennsylvania (unpub

lished). 
5 See the Summary in I, Sec. VI (e). Computational details are 

found in I, Appendix F. 

for obtaining the zero-energy forbidden amplitude. We 
shall see that the g4 Ing terms which previously appeared 
in various stages of the calculation are spurious. The 
actual order of the forbidden amplitude will here be 
found to be g4. 

In order to get around the difficulties mentioned 
above it is evidently indicated to return to the exact BS 
equation which we gave in Eq. (IA.8) and which we 
restate in the next section. As in I, we set the lepton 
masses equal to zero in the kernel of this equation. By 
the general power counting argument,6 we know that 
any g2 corrections to the lowest order amplitude can be 
obtained by setting all external momenta equal to zero. 
To make use of this, we set the initial momenta pi,p2 
equal to zero. The exact integral equation then simplifies 
considerably since it now depends on a single four-
vector momentum p. This "zero-momentum" equation, 
suitably regularized, is studied in some detail in Sec. 3. 
We find that the solution can be split into two parts, 
a "high-energy part" and a "low-energy" part. The 
high-energy part contains the divergences of the 
perturbation solution, and is actually a constant, 
independent of momentum for any value of the reg
ulator mass. In the limit of infinite regulator mass, the 
constant goes to zero, and the high-energy part 
vanishes. In the discussion of the high energies we meet 
again (as is to be expected) with the "peratization 
procedures" which we outlined in I, though now slightly 
different techniques are used. However, the point 
remains the same, to wit, that the higher order effects 
are not negligible, on the one hand, but not explosive 
either, on the other, due to the self-damping at high 
energies. 

The remaining low-energy part satisfies an integral 
equation which can be iterated, giving finite results. 
That is, the solution can be expanded in powers of g2, 
each term having a finite coefficient. The leading (g2) 
term agrees at p=0 with the solution found in I, i.e., 
the lowest order amplitude for allowed processes is 
reduced by a factor 3/4. Since the corrections at zero 
momenta can be expanded in powers of g2, we get no 
g4 lng in the expression for the "forbidden" amplitudes. 
Instead we find the ratio of forbidden to allowed 
amplitude at zero momentum to be (3g2/47r)+0(g4). 
Some further remarks on the amplitudes at finite 
momenta are made at the end of Sec. 2(c) and in 
Appendix B. 

In Sec. 3 we apply our techniques to a field theory 
with local four-fermion interactions. In lowest order, 
this theory can of course be considered as the limit of 
the W theory for infinite boson mass, in the following 
sense. Let 

m—> oo ? g —> oo ? 

but keep the ratio of these two quantities constant in 
such a way that 

g2/m2=G/^/2) 

6 See I, Sees. I l l and VII(a). 
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where G is the Fermi constant. However, this simple 
relation between the W and the Fermi theory is by no 
means maintained if higher order effects are included. 
This is illustrated in Sec. 4, where we apply the identical 
methods of Sec. 3 to the equivalent problem in the 
Fermi theory. That is to say, we deal with the set of 
graphs (bubble graphs) which is obtained from the 
uncrossed ladder graphs of the W theory by pinching 
the W rungs to a point. Upon summing these bubble 
graphs in this way, we find that the amplitudes for both 
allowed and forbidden processes go to zero as the 
regulator mass goes to infinity.7 This lack of corre
spondence with the W theory is evidently due to the 
fact that in computing higher order graphs, one 
integrates over momenta which can be large compared 
to the mass m, 

We are in no position to say that the vanishing of all 
amplitudes proves that a Fermi field theory is meaning
less, as we do not know whether the inclusion of larger 
sets of graphs may change this result. However, we 
believe that the present comparison between the W 
theory and the Fermi theory is instructive. I t is well 
known that both of these theories are unrenormalizable. 
In the light of our present results it seems to us that 
this statement is as enlightening as saying that a purple 
horse is as probable as a green cow. 

As in I, we use regulator procedures in order to have 
finite integrals over momentum space throughout. Only 
after all such integrations have been performed do we 
let the regulator mass tend to infinity. However, unlike 
the method used in I, we do not regulate the W propa
gator at all, but rather the lepton propagators. We 
were led to this by the study of the Fermi field theory. 
I t then turned out to be technically expedient to use 
the same method for the W theory. In particular this 
makes the comparison of the two theories quite trans
parent at every stage. Presumably the particular choice 
of regularization method does not affect the final 
answer, however. 

2. MOMENTUM DEPENDENCE OF 
THE AMPLITUDES 

We consider here the dependence on external 
momenta of the various amplitudes. We use the same 
notations as in I, see especially I, Sec. IV and Appendix 
A. The allowed and forbidden amplitudes will generally 
be of the form 

M^uy^l+y^u uyv(l+y5)u, (2.1) 

where each one of the various spinors u has in each 
specific case its appropriate particle label. We noted 
earlier that the lepton mass is neglected in the kernel 

7 This result is true for a fixed value of the bare Fermi constant 
G. We shall not enter here in discussions of limiting process which 
are of the type: G —> oo, a cutoff —> oo, in some prescribed ratio. 
For such arguments we refer to A. Abrikosov, A. Galanin, L. 
Gorkov, L. Landau, I. Smorodinsky, and K. Ter-Martirosyan, 
Phys. Rev. I l l , 321 (1958). 

of the BS equation. I t then follows from 75 invariance 
that there can be no scalar, tensor terms induced by 
the higher order weak effects. 

The tensor M„v can be written as a sum of terms 

M^^ad^+ffq^+m^, (2.2) 

where we have isolated the first two terms because they 
are the only ones which get contributions from the 
exchange of one vector meson. The form factors a, fi are 
scalar functions of q2 and P2 (q=momentum transfer, 
P= total energy four vector). The remaining terms m^ 
can be constructed from the available independent 
4-vectors, which we can take as qM p\^ and p^. For later 
purposes we note that m^ has the following property: 
If we set pi=p2z=Q, and pi+p^O, but not pi, p2' 
separately zero, then m^ vanishes, whereas the terms 
in a and $ do not vanish. These conditions can only be 
satisfied off the mass shell, as is easily seen in the c m . 
system of the incident particles. 

In second-order perturbation theory, we have for the 
allowed process 

a2=a(q2) = -ig2/(q2+m2), (2.3) 

&=/3 (? 2 ) - -ig2/m2(q2+m2), (2.4) 

wM„,2=0. (2.5) 

According to the general power counting argument,6 

the only quantity which gets a g2 correction from multi-
meson exchange is a, and furthermore this correction is 
independent of momentum. That is (always for the 
allowed process) to order g2, 

a—a2+ir}g2/tn2, (2.6) 

]8=&, (2.7) 

w„v=0, (2.8) 

where r? is a constant. 
If we are prepared to accept this conclusion based on 

power counting, rather than to demonstrate it explicitly 
as we did through our iteration procedure in I, it is 
evidently sufficient to calculate /3, and a with all 
momenta set equal to zero, since 

(ig2/m2)rj=a(p^t=0)+ (ig2/m2). (2.9) 

I t should again be emphasized6 that the Eqs. (2.6)-(2.9) 
have a much more general validity than for ladder 
graphs only. I t was only for the latter subset of graphs 
that a value for rj could be given in I, namely, 

* = i - (2.10) 

The general quantity rj remains unknown so far,8 

however, and it may be noted that 17 is not additively 
composed of contributions from ladder graphs and from 
"other" graphs. As was already noted in I, it is highly 
desirable to extend to larger classes than only the 

8 However, in I Sec. VI (d) we gave reasons for a conjecture that 
Eq. (1.10) may well have a much wider validity. 
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uncrossed ladder graphs the general method of resum-
ming graphs by ordering the contributions with respect 
to their degree of singularity. In this paper we have 
nothing further to say about this subject. 

To return to the ladder graphs, we set pi=p2=0 from 
the start. Because of this restriction, we cannot here 
use the BS equation to say anything definite about 
m^, which vanishes at zero momentum, or about 
momentum dependent corrections to a, fi except that 
they are of higher order in g2. It is, however, possible to 
compute the leading corrections to a, #, and m^ at low 
momenta by another method, providing that we 
believe that the theory really is well defined. We return 
to this in Appendix B. 

The information about allowed processes is contained 
in Eqs. (2.6)-(2.10). For the forbidden processes we 
shall find the following zero energy values for a and fi. 

9ig" 

16ir2tn2 

it 
8TT2W4 

(2.11) 

The results for the Fermi case, to be discussed in 
Sec. 4, are expressed by 

a=p=miiy=0 (2.12) 
for all energies. 

3. BS EQUATION IN THE W THEORY 

(a) Reduction of the Integral Equation 

As in I we denote the amplitudes for the allowed and 
forbidden processes by MQdd and MeVen, respectively. 
We introduce again the linear combinations 

M±=Modd±Meven (3.1) 
and put 

M ± = M , ± 7 M ( 1 ) ( 1 + 7 5 ( 1 ) ) T / 2 ) ( 1 + 7 5 ( 2 ) ) . (3.2) 

The superscripts (1), (2) distinguish the Dirac matrices 
on the two fermion lines. We next restate the integral 
equation which M^ was found to satisfy in I, see 
Eq. (IA.8). 

(pl~pl)»(pl—pl)v 
= - ^ 2 fi/iir 

Ug2 

mz Mpi'-pi. {pi'-pif+m* 

P\» 'piT 

J (Pi 

r W-pi'W-p*').! 

L m2 J 

X-
(pi"-pi')2+m2 

Mp^{pi',P*",pi,P*W. (3.3) 

the two incoming four-momenta, pi, p2 the outgoing 
ones, while 

p2" = pi+p2-pi". (3.4) 

The £ symbols are defined by 

fa /?PM = = ^a^PM"~^ap^M+^aAp+ e a /3pM- ( 3 . 5 ) 

The following identities are easily derived.9 

£appnAPil~bapAPp if Ap^A^pj (3.6) 

£a/?PM£arp(r = 45 / S T 5 M ( r , ( 3 . 8 ) 

%appfx$;<rTpvXaX<rYpYT = Xcl
2Yp2dllv. (3.9) 

In one respect, Eq. (3.3) differs from the integral 
equation given in Eq. (IA.8). In the latter we had 
regulated the boson propagators \_{p\— />i)2+w2]~1 in 
the inhomogeneous term and [_{pir~pi)2+fn2'J~1 in the 
kernel. We have not done so here but have regulated 
the fermion propagators instead, as is indicated by the 
notation 1/(PI")R2 in Eq. (3.S). Here we define 

1 

(P2)R p2 p2+M2 
(3.10) 

More precisely this means that the fermion propagator 
has been treated as follows. We neglect a possible 
lepton mass and put 

© . - ^ 
1 

p2 p2+AP 
P=-iyxpi- (3.11) 

This procedure maintains the 75 invariance throughout. 
In this paper we determine the zero-energy behavior 

of M^j and therefore put pi—p2=0 from the start. 
Then 

pi=— p2=p, 

Pi"=-P*"=p'> (3.12) 
and 

M^^M^pM) (3.13) 

depends on a single four-momentum. As we have stated, 
on the mass shell p=0, so that to get the physical 
amplitude we must set p = 0. In particular M^v(p,M) 
does not represent a physical quantity in the scattering 
problem. It would nonetheless be of interest to compute 
it as a function of p, as it may occur in iteration methods 
for calculating other matrix elements of interest such 
as the propagator, vertex etc. We return to this question 
elsewhere. 

It is helpful for what follows to write the quantities 
on the right-hand side of Eq. (3.13) explicitly as a 
function of a four-momentum as well as of the regulator 
mass M. On covariance grounds 

M»Hp,M)=aHp,M)^v+PHp,M)plipv. (3.14) 

The meaning of the symbols are as follows, pi, pi are 9 Equation (3.9) was independently derived by Dr. T. T. Wu. 
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Insert Eqs. (3.10) and (3.12)-(3.14) into Eq. (3.3) and reduces to the uncoupled integral equations (3.17), 
(3.20) in the zero energy limit. 

Before we proceed to discuss the solutions to these 
use the identities Eqs. (3.6)-(3.9). One finds 

-ig2(^v+™-2p»p,) 4ig2M* 

p2Jtm2 
( 2 T ) * 

X 
J p'Kp'2-

d'p' 

equations, let us first define precisely the quantities we 
are ultimately interested in. This has yet to be done, 
because we have to state in which order the limiting 
processes p—>0,M—*<x> have to be performed. We do 
this in the order just indicated, that is, we define 

p'2(p'2+M2)2[(p'-p)2+m2] 

X{5,l4aHp',M)+p'^Hp',M)-] 

+ (l/m%(p'-pyaHp',M)8liy 

+ (p'-p),(p'-p)rp'VHp'!M)-]) • 

Take the trace of Eq. (3.15) and define 

T±{p,M) = 4a£(p,M)+j?p±(p,M). 

T^ip^M) is found to satisfy 

r ± = Km \imT±(p,M) 
M->oo p->0 

(3.21) 

T±(P,M) = 
p2+m2 

Ug2M* HgLM* r 

(2TT)4 J p'2(p'2 

d*p' 

as the physical value of the trace at zero energy. 
This can be made plausible as follows: The physical 

matrix element M± of Eq. (3.1) represents the sum of 
(3.15) contributions of graphs of various orders. As was 

explained in I, Sec. Il l , these contributions are, always 
for zero energy, functions of g, tn, and M. We have to 

(3.16) n n d this sum for finite M. In the present paper this is 
done by first introducing quantities like T^^p^M) which 
do not only depend on M but also on the unphysical 
(off the mass shell) parameter p, and then letting p —> 0. 
After that is done we must finally let M—> <*>. This is 
the content of Eq. (3.21). 

We show in Sec. 3(c) that 

p'2(p'2+M2)2£(p'-p)2+m*] 
lim l im^±(^,M) = 0. 

M—»oo p—>0 

L m2 J 
X 4 T±(p',M). (3.17) 

From Eqs. (3.16, 3.21, 3.22) 

Use Eqs. (3.16), (3.17) to substitute for a*1 back in 
Eq. (3.15). This yields 

0^= lim lima±(#,M) = i r ± , 

(3.22) 

(3.23) 

A„v(p)l3±(p,M)= AUP) 
m2 

1 4igW4 

X 
J (pt*-

p2+m2
 (2TT)4W2 

where 

(p'2+M2)2l(p'-p)2+m2'] 

XA,y(p-p')0Hp',M), 

Multiply Eq. (3.18) by 

7 
and take the trace. The result is 

(3.18) 

so that at zero energy, and neglecting the lepton masses 

lf±=«±T/1)(l+T5 (1))T/2)(l+75<2>). (3.24) 

(b) Iteration Procedure for the Trace Equation 

Put 
THp,M) = T1Hp,M)+T2Hp,M), 

where 

(3.19) Tl±(pjM) = 
-ig2 Ug2M4 

A„^=-Wf)i 
( * W A 
I Op, — 1 , 
V 3 P2 / 

PHp,M) = -*r 16%W4 A,v{p) 
THP,M> 

m2(p2+m2) 3(27r)%2 p* 

(.P-p^ip-P'UHp^p' 

_1_ 

m2 (2x)%2 

fd"pflT1Hp\M)+T2^ 
v / x i 

-Ug2 

p2-\-m2 

xf-

p'2(p'2+M2)2 

12ig2M4 

d'p'THp'M) 

(p',M)-] 

±-

(3.26) 

12ig2M4 

X 
np-i 

J (P'2-
(3.20) 

(.p'2+M2)2l(p-p')2+m2l 

Thus we have now found that the exact BS equation 
X 

p'2(p'2+M2)2l(p-p')2+m2'} 

d4p'T\±(p',M) 

J p'Hp'2 p'2 (p'2+M2)2l (p' - pY+nf] 

(2x)4 

(3.27) 
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Equations (3.25)-(3.27) are equivalent to Eq. (3.17). 
Let us consider some general features of Eqs. (3.26)-
(3.27). _ 

Equation (3.26) is evidently solved by 

Ti±(p,M) = TX±{M), independent of p . (3.28) 

This means that T^ will persist a t high virtual fre
quencies, unless it is equal to zero at all frequencies. The 
quanti ty Ti±(M) is what we called the "high-energy 
pa r t " in the Introduction. We show that Ti±{M) 
indeed —> 0 as we let M —» <x> after having performed 
all integrations. 

Generally, it follows from Eq. (3.28) that we may 
look upon the first two terms on the right-hand side 
of Eq. (3.27) as " the inhomogeneity" of the integral 
equation for T2

±(p,M). Because T2
±{p,M) —*0 as 

p—> oo we referred to it as the "low-energy pa r t " in 
the Introduction. 

We now proceed as follows. First we solve Eq. (3.27) 
by iteration, considering its inhomogeneity as the 
leading solution, then taking this inhomogeneity 
substituted in the last term of Eq. (3.27) as the next 
correction, etc. In other words we do Born approxima
tion for finite M. The solution thus found still depends 
on the unknown quanti ty Ti±(M) of Eq. (3.28) which 
then is of course determined by Eq. (3.26). Thus after 
we have solved for T2

±(p,M) to any desired order in g, 
we can solve rigorously Eq. (3.26) for T^{M). We 
pursue this method for a few steps. 

First of all Eq. (3.27) gives the following result to 
leading order for T2

±(0,M): 

Ug2 Sg2T^(M) M 
T^(0,M) = =F- In— . (3.29) 

m- 2TT2 

Note that some useful Feynman integrals used here and 
in the following are collected in Appendix A. 

In order to know the limit value for T2
±(0,M) as 

M —> oo we must of course find out how Tj^iM) 
behaves with M. This we have done to the accuracy 
where one substitutes the g2 terms of T2

±(pyM) into 
Eq. (3.26). This yields 

niHM) = (-
3ig* M\ 

• hi

nt2 2w2m2 m/ 

g2 /M\2 48gW8 i 
l ± i - ( - ) + <t>(M) , (3. 

4x 2 \w/ m2 J 
30) 

where 

<t>(M) = 
- ( -

d*p 

(2r)V f(f+M*y 

d\ 

f(<f+M*ff.(q-pY+nf] 
. (3.31) 

We estimate <£(Af)~l/M6 . Hence 

T£(M)-*0 as \/M\ (3.32) 

so that to leading order, see Eqs. (3.14) and (3.29), 

^ ± = - ( 3 ^ / 4 ™ % , . (3.33) 

This result is equivalent to Eq. (2.10), as we have 
from Eq. (3.1) 

M„Md= ~ ( 3 # / 4 » % , 

M„ 1 =0 to this order. 

(3.34) 

(3.35) 

We have also computed the next correction to 
T2

±{piM) which is obtained by doing second Born on 
Eq. (3.27). The result is, again taking the limit p~>Q 
first, 

4:TT2M2 

( l M\ 
+0( — I n - ) , 

\M2 ml 
(3.36) 

where we have used again Eq. (3.20) for Z'1
±(Af). From 

Eqs. (3.1), (3.14), and (3.26) we find the leading term 
for the forbidden processes to be 

Ma p.even (3.37) 

which gives the quantity a referred to in Eq. (2.11). 
We have not shown the convergence of the iteration 

procedure used here. If the convergence is all right, then 
we conjecture from Eq. (3.27) that r ± [Eq. (3.21)] is 
equal to ]imp^Ty±{p), where T±(p)=—3ig2(p2-\rm2y~2 

±12^ 2 (27r ) - r^ r ± (^ )^ 2 [ (^ -^ ) 2 +w 2 ] - 2 . 
We conclude this subsection with a comment on the 

relation between the present method and the one used 
previously. Ti±(M) is closely related to a quantity 
which we encountered in I, Sec. VI (d). It was shown 
there, by the same trace techniques as used here, that 
the essence of the peratization method lies in the 
isolation of the nugatory term 

( - ^ 2 / w 2 ) { l ± [ - (4^2/w2)AF(0)]}-1 (3.38) 

in the trace, see I, Eqs. (6.23, 6.24). A/?(0) is the value 
for zero argument of the Feynman propagator in co
ordinate space, which is a quadratic divergence. Clearly, 
the expression just written down corresponds to 
Eq. (3.30) if in the latter we ignore the g4 terms. This 
then establishes a connection between the two methods. 
In Eq. (3.30) we have, furthermore, an explicit expres
sion for the 0(g4) modifications due to the feedback from 
low virtual frequencies. 

(c) Discussion of the Equation for (J* (p,M) 

We have now to show that Eq. (3.22) holds true, and 
therefore return to Eq. (3.20). Unlike the equation for 
^(piM), we meet here an inhomogeneous term which 
goes to zero as p —* c©. One may therefore ask if Eq. 
(3.20) can be iterated as it stands. This is impossible, 
however, to order g4 one obtains a term ^\nM/m in 
this way. We now show that the ft equation can be 
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treated similarly to the T equation by first isolating 
that term in the kernel which gives rise to the loga
rithmic singularity just mentioned. This is done as 
follows. Put 

1 

(p-p'Y+m2 p,2+m' 

Ip-p'-p' 
y = 

p'2+tn2 

[l+y+y2]-
(p-pf)2+m2 

(3.39) 

Perform the angular integrations for the terms which 
involve yn

} n<2 with the help of 

P^A^Up-p'^iP-Pl^p-PlMpW 

< 1: »=0 

n=l (3.40) 

This yields 

AAP)(P-P'),(p-P')y 

p4i(p-py+™*i 
3( *'* 

V+IP'KP'+W"), »=2. 

P'+3pY-

4U(/>'2+*»2)3 0'2+w2)2 (^'2+OT2) 

iA,v(p)(p-p'X(p-p')v 
X-

Wlip-p'Y+nf] 
f \ . (3.41) 

The meaning of the arrow in Eq. (3.41) is: the right-
hand side of Eq. (3.41) is equivalent to the left-hand 
side as long as either side is substituted in Eq. (3.20). 
It is easily checked that it is only the first term on the 
right-hand side of Eq. (3.41) which gives the lnM-
singularity when we iterate Eq. (3.20) once. 

This leads us to divide p into two parts, as follows: 

t3Hp,M)=PiHp,M)+p2Hp,M) (3.42) 

0i±(fcjf) = = 
Mg2Ml 

3w2(27r)V (p'2+rn2Y 

DW,^)+/W,M)] 
X-

hHPiM)-

(p'2+M2)2 

\6ig2M* 

(3.43) 

-jK(p,p>) 
m2(p2+m2) 3W2(2TT)4J 

X-
(p/2+M2)2 

K(p,p')=-
PAL(P-Pf)2+^1 4 (p'2+tn*)* 

(3.44) 

(3.45) 

Evidently, K(p,p') is an expression equivalent [with 
respect to the integral in Eq. (3.20)] to the right-hand 
side of Eq. (3.41) minus its first term. 

The Pi equation is solved by P^faMy^PiHM), 
independent of p. Solving for Pi in the same manner as 
described earlier for Ti we find 

cig*\n(M/fn)+c2g«<t>i(M) 

l+c*g2M2 hi(M/m)+C4gfa(M) 
(3.46) 

where the c's are constants (independent of M). The 
ch c% terms are obtained by substituting the g2 part of 
p2 into Eq. (3.43). To this approximation one has 
Pi —> 0 as \/M2. The c2r c± terms come from taking into 
account the next iteration for ft. We have 

<t>n(M) = M* 
j/wp 

(p2+m2)z(p2+M2)2 

K(p,q)d*q 
X 

(q2+M2)2(q2+m2y 
-. (3.47) 

The c2 term is more singular than the ci term [cf. a 
similar situation in Eq. (3.30)], but the c4 term is also 
more singular than the c% term and the net result is 
again P —» 0 as 1/M2. 

The kernel K(p,p') is so chosen that we can iterate 
for ft. To isolate the terms which survive as p —> 0 it is 
useful to employ Eq. (3.41). After some straightforward 
integration one finds 

8=*== \im\imp±(p,M)--
M—>oo p—*0 

%g2 l g 
± 

w 4 8TT2W4 

(3.48) 

Remark. In the derivation of Eq. (3.48) we have had to 
consider the contribution to \\mp^p2

±{p,M) of the Pi 
term in Eq. (3.44). This contribution is 

-g2M%HM) 
/ 

K(0,p)d*p 

(p2+M2)2 

With the help of Eq. (3.41) and the M~2 behavior of ph 

one finds that this expression is 0(M~2) as M —» <*>. 
To find Eq. (3.22) it would not have been necessary 

to find p± itself. However, this quantity is of interest for 
other reasons. Let us start from Eq. (2.2) and put in 
it pi=p2~0 as well as Eq. (3.12). Bearing in mind the 
property of mM„ quoted after Eq. (2.2), we see that 
Eq. (2.2) reduces to Eq. (3.14). Therefore we can find 
from Eqs. (3.1) and (3.48) the value of p in Eq. (2.2) 
for the special case of zero energy. For the allowed 
process we learn nothing new in this way, see Eq. (2.4). 
But for the forbidden process we now find the result 
for p quoted in Eq. (2.11). Our present method does not 
suffice to obtain the energy dependent terms of this 
form factor. 
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P/ 

P2" 

FIG. 1. (a) The general 
. __ r ladder graph in the W 
P2 theory; (b) the correspond

ing graphs of the Fermi 
theory, obtained by pinch
ing the W rungs. The graphs 
are divided by the dashed 
horizontal line for the pur
pose of deriving the BS 
equations. 

4. BS EQUATION FOR FERMI FIELD THEORY 

We start from the interaction Lagrangian 

-(G/V2)/x/x*, (4.1) 

A = ^{MYA(1+Y5)*V+£Y\(1+Y5K} . 

The lowest order matrix element for the "allowed" 
amplitude is given by (as in I Sec. IV, we omit spinor 
factors) 

MV=-(G/^2)y^y^(l+y5V)(l+To{2)). (4.2) 

Just as for the W theory, one can distinguish between 
allowed and forbidden processes; the latter have no 
contributions of order lower than G2. We consider now 
those graphs in the Fermi theory which are the analogs 
of the uncrossed ladder graphs in the W theory. The 
correspondence between the graphs is as drawn in 
Fig. 1. 

As before, one defines amplitudes MQM and Meven for 
the allowed and forbidden processes and again intro
duces the linear combinations M± as in Eq. (3.1). 
Transcribing step by step the arguments of I Sec. IV, 
one obtains the BS equation 

M±W,pJ,phpl) = M<n± 
y/I (2TT) 

X Y M ( 1 ) ( 1 + 7 5 ( 1 ) ) Y M ( 2 ) ( 1 + 7 5 ( 2 ) ) 

1 

x- •M±W,p*",php*). (4.3) 
(PI")B* ip*")* 

The regulated fermion propagators have been defined 
in Eq. (3.11), M«> is given by Eq. (4.2). 

Put 
M ± = ^ ± 7 / 1 ) ( 1 + T 5 0 ) ) T / 2 ) ( 1 + 7 5 ( 2 ) ) . (4.4) 

Then10 

ySh,mN±(pi',P*',pi,P*) = - 7 , ( 1 , 7 M ( 2 ) (G/yS) 
4G 1 r 

± 7 & » ^ . — / W M " K ' T T ( 1 ) 7 . 
v f (2TT)V 

(2) 

x-
1 1 

(PThHp2")B 
•N±W,pt",PuP,). (4.5) 

With the help of Eq. (3.8), it follows that 

G 16G 1 
N±(pl',p2,pl,p2) = 

X-

V2 V2 (2T> 

(pi"-pi") 

:T)V 

W)B*(Pt")* 
•X±(PI",P*",PLP1- (4-6) 

Because of Eq. (3.4) we see that the only dependence of 
the kernel on the external momenta is via the total 
energy momentum vector pi+pz=P. Thus 2V± may be 
taken to depend on P only. But this makes it a constant 
with respect to the pi" integration. Thus the solution is 

G / \6GMi 

N±(P) = ( I T 
VZ\ v2(2x)4 

X 
J kHk-

d^ikiP-k)} 

(k-py(k2+M2){ (k-py+M2} ) " • 

(4.7) 

Evidently the k integral diverges like M2 for M —> oo 7 

so that 
N±(P) = 0 for all P , (4.8) 

which leads to the result quoted in Eq. (2.12). Note that 
equations like (4.7) are closely related to earlier results 
by Abrikosov et al? on Fermi field theories. 

While there is therefore no need to consider separately 
the specific case pi=p2—0y it is nevertheless instructive 
for a comparison with the W theory to make this 
specialization in Eq. (4.6). Using again the notations 
given in Eq. (3.12), Eq. (4.6) reduces to 

N±(p) = 
-G 16GM4 fd*p'-NHp') rd*p'-i 

J P'HP" VI v2 J p'2(p'2+M2)2 
(4.9) 

10 We have used Eq. (IA.4) at this point. 

This equation is very much akin to the one given in 
Eq. (3.26) for the high-frequency part of the trace. 
That is, there is a correspondence between 7 ^ and T^. 
And the solution: Ti±= constant which —> 0 for M —> <*> 
corresponds precisely to the solution (4.8) of the Fermi 
theory. Indeed, if we make the curious limiting process: 
m—> oo before performing virtual momentum integra
tions, then Eq. (3.17) becomes identical with Eq. (4.9) 
if use is made of g2m~~2 —» 2~1/2G. 

Whatever the results of this section may mean, it is 
hoped that they have helped to make it abundantly 
clear that the Fermi-theory and the W-theory have a 
quite distinct outlook inasfar as the peratization 
program is concerned. 
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APPENDIX A 

We list here a few elementary Feynman integrals 
which play a role in the foregoing sections. Put 

$y(M,m)= / 
dAp 

p2(p2+M2)2(p2+m2y 
We have used 

^{M,m) = m2/M2, 

2iw2 r 1 M l - ] 
$i(Af,w) = — I n , 

- ~ A.M2-m2 m 2M2J M2—m2LM2—m2 m 

<£2(M,w)=-
2iir2 2 M 1 

l n - + — 
{M2-m2)2L M2-m2 m 2M2mJ 

in the discussion of T±. 

APPENDIX B: MOMENTUM DEPENDENT 
CORRECTIONS TO THE MATRIX 

ELEMENT 

In the previous sections, we have shown that the sum 
of the uncrossed ladders for lepton scattering at zero 
external momenta can be obtained from the integral 
equation (3.15), and agrees with the result obtained in I. 
The question naturally arises as to whether the matrix 
element at finite momentum transfer can also be 
obtained. In particular, we would like to know whether 
the momentum dependent corrections are finite, and 
if so what is their order in g2. We shall restrict our 
selves to external momenta which are still "small" in 
the sense of Eq. (16.11), i.e., g2(pext)2m~2<l. In this 
region, it is reasonable to expand the matrix element in 
powers of (pext)2m~2

y and to consider the behavior of 
the separate coefficients. 

To do this, we shall need a slight generalization of 
the power counting argument of I, Sec. 3. In order to 
give this generalization, it is necessary to be able to 
determine the degree of divergence of a Feynman graph, 
such as an uncrossed ladder graph. I t would of course be 
easy to estimate this if the answer were found by sub
tracting the total number of momenta in the denomi
nator of the integral from the number in the numerator. 
We shall call this "over-all power counting." However, 
it is clear that this procedure is not valid in general for 
multiple integrals of the type of an nth order graph. In 
particular, there arises the problem of divergent sub-
integrations, which can change the degree of divergence 
of the graph as a whole. This problem also arises in the 

renormalization theory of quantum electrodynamics,11 

where it is treated through the concept of primitively 
divergent graphs.11 However, that idea does not appear 
to go through here, and in particular the uncrossed 
ladder graphs, which are irreducible in the sense of re-
normalization theory, are not primitively divergent, and 
hence we cannot conclude that all subintegrations are 
finite. Nevertheless, the method of over-all power count
ing gives the right answer when we confine ourselves to 
the leading singular terms of the matrix elements for the 
case of zero external momentum. This was the case con
sidered in I, Sec. I l l , where we found that for an (n+1)-
rung graph, (n^ 1), the leading term is ~g2 n + 2(M/m)2 w . 
That this result is indeed correct can be seen by a 
formal expansion of the denominator in Eq. (3.30). 

However, already for the next-to-leading singularity 
for zero external momentum, over-all power counting 
breaks down. Indeed, this method would lead one to an
ticipate next to leading contributions ^g2n+2{M/m)2n~2 

(for zero-lepton mass), the argument being that the 
next to leading term has two more powers of m, hence 
two powers less in M. This would correspond to a InM 
singularity to 0(g4) and power singularities for n>l. 
However, the formal expansion of Eq. (3.30) shows 
that actually the next-to-leading singularities are 
~£»+*(M/m)2nr-2 \n(M/m) for all n. 

Let us now turn to the momentum-dependent terms 
^ (p^fmy% jf over-all power counting were applicable 
to these terms, their leading singular contributions 
would be ^g2n+2{M/m)2n~2{p^/m)2, n^l. In what 
follows we explore the consequences of the assumption 
that this estimate is correct. (To check whether this is 
true or not, one needs a more detailed study of higher 
order graphs than we have made here.) These conse
quences are twofold. 

(1) For the allowed processes, at small momenta, the 
momentum-dependent terms are small in comparison 
with the terms we have computed. 

(2) This is not the case for the forbidden processes, 
however, where the coefficient of the constant term is 
actually of higher order in g than the (£ext)2 term. 
The above estimate leads in fact to contributions 
~g4(lng) (pext/m)2 where the term in question can be 
calculated from the one graph which involves two 
uncrossed meson exchange.12 

The Feynman matrix element for this graph is given 
by the following expression, obtained by regularizing 
the W propagator as in I. We follow our previous 
notations for the external momenta. 

g" r i i 
MA = -—- / W I ' 7 M ( 1 + 7 B ) 7 , ( l + 7 5 ) ^ i ^ 2 / 7 r ( l + 7 6 ) 7 X ( 1 + 7 B ) M 4 * 

(2T)< pi-k p2+k 

X 5 M T -
(q-k)n(q-k)T i^~)\ (M2-m2)2 

m2 / I (k2+m2)(k2+M2)l(k-q)2+m2X(k-q)2+M2^\ 
(Bl) + II 8vX+ 

m2 

11 F. J. Dyson, Phys. Rev. 75, 1736 (1949). 
12 An argument of this kind was used by T. D. Lee, Phys. Rev. 128, 899 (1962), to compute the a lna corrections in W electro

dynamics. 
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We are interested in the terms proportional to two powers of external momenta, and in particular to the loga
rithmically divergent part of this. It is easy to see that such terms come only from the term proportional 
to (q—fy^q—fyrkvkx. We therefore select this term, and rewrite it as 

v r i 
Ui'(pi-pi'-k) k(l+yt)uiiti(pt'-pi-k) <2T) 4 W' Px-k 

X *(1+7B)«» 
p2+k 

(M2-m2)2 

(ki+mi)(ki+M%(q-ky+miX(q-ky+M2'] 
(B2) 

For simplicity, we calculate this on the mass shell in the approximation where the masses of the external fermions 
are also neglected. [We have already neglected the masses of the virtual fermions in writing (Bl)]. In this case 
(B2) simplifies tremendously, and becomes 

[4g4 /(27r)4w4>i /7M(l+75)^iW2
/7K (1+75)^2 

We notice that in this approximation, the integral 
only depends on the momentum transfer q. Further
more, the term Pq^qv in Eq. (2.2) gives zero in this 
approximation. Therefore, the expression (B3) contri
butes only to a(q2) of Eq. (2.2). 

The integral can be evaluated by the standard 
technique of introducing Feynman parameters. Upon 
doing this, and expanding the resultant integral in 
powers of q2, we obtain the following results. There is a 
constant term proportional to M2, which has been in
cluded in our zero energy solution (3.37). There is also 
a term proportional to q2 with a coefficient proportional 
to \n(M/m). Specifically, this term is 

k^v(M
2-m2)H^k 

(B3) 
(k2+m2)(k2+M%(q-k)2+m2X(q~k)2+M2'] 

proportional to q2/m2, and of order g2ln(l/g), The 
contribution of this term to the quantity MM„,even is 

ln-oM 
24w2m2 m2 g 

(B5) 

This expression agrees with the corresponding term 
in I, Eq. (6.16), calculated by solving the approximate 
integral equation. 

The results of the text and this Appendix may be 
combined to give expressions for the allowed and 
forbidden amplitudes, neglecting the fermion masses. 

24TT 2 W 4 
In 

AT .̂odd= (~3^2/4m2)5,y+0(^), (B6) 

fii,7,(l+T.)i*i«i/Ti.(l+7»)«i. (B4) M^ev^ ( ^ / I f e rW)* , 

The remaining terms are finite. We see that there 
results a term, in the forbidden amplitude, which is 

+ {^i\ng/U*2m*)qXP+0{g*)P»v, (B7) 

where the tensor P/ vanishes at zero momentum, 


